SET-3G[™] High-Strength Epoxy Adhesive

SET-3G is the latest innovation in epoxy anchoring adhesives from Simpson Strong-Tie. Formulated to provide superior performance in cracked and uncracked concrete at elevated temperatures, SET-3G installs and performs in a variety of environmental conditions and temperature extremes. The exceptional bond strength of SET-3G results in high design strengths.

Features

- Exceptional performance superior bond-strength values at even long-term elevated temperature of 110°F (43°C) using optimized drill bit diameters
- Tested in accordance with ICC-ES AC308 and ACI 355.4 for use in cracked and uncracked normal-weight and lightweight concrete
- Design flexibility can be specified for dry or water-saturated conditions when in-service temperatures range from -40°F (-40°C) to 176°F (80°C)
- Jobsite versatility can be installed in dry, water-saturated or water-filled holes in base materials with temperatures between 40°F (4°C) and 100°F (38°C)
- Maximized production and safety qualified for installation using the Speed Clean[™] DXS dust extraction drilling system as an alternative to the conventional blow-brush-blow hole-cleaning method
- Wire brush hole-cleaning system for conventional blow-brush-blow cleaning method
- Available in two cartridge configurations for maximum versatility — 8.5 oz. coaxial or 22 oz. side-by-side cartridges dispensed using manual, battery or pneumatic dispensing tools
- With higher bond strengths, ductile solutions can often be achieved with SET-3G in high seismic areas
- 1:1 ratio, two-component, high-strength, epoxy-based anchoring adhesive formula
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)
- Low-odor formulation
- When properly mixed, SET-3G will be a uniform gray color
- Volatile organic compound (VOC) 1.9 g/L
- Manufactured in the USA using global materials
- Tested per ACI355.4
- SET-3G code listed for installation with the Speed Clean[™] DXS drill bits without any further cleaning (ICC-ES ESR-4057)

Applications

C-A-2018 © 2018 SIMPSON STRONG-TIE COMPANY INC.

- Threaded rod anchor and rebar dowel installations in cracked and uncracked concrete under a wide variety of environmental installation and use conditions
- Installation in downward, horizontal and upwardly inclined (including overhead) orientations
- Qualified for use in structures assigned to Seismic Design Categories A through F

Codes

ICC-ES ESR-4057 (concrete); City of Los Angeles (see ICC-ES ESR-4057); AASHTO M235 and ASTM C881, Types I and IV, Grade 3, Class C; NSF/ANSI Standard 61 (300 in.² / 1,000 gal.)

Chemical Resistance

Contact Simpson Strong-Tie for information.

Installation and Application Instructions

(See also pp. 100-102)

• Surfaces to receive epoxy must be clean per approved hole cleaning method.

SET-3G Adhesive

- Base-material temperatures must be 40°F (4°C) or above at the time of installation. For best results, adhesive should be conditioned to a temperature between 70°F (21°C) and 80°F (37°C) at the time of installation.
- To warm cold adhesive, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material can harden in the dispensing nozzle within 30 minutes at 70°F (21°C).

Note: For full installation instructions, see product packaging or visit strongtie.com/set3g.

SIMPSO

Strong⁻¹

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Adhesive Cartridge System

Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle
SET3G10 ²	8.5	Coaxial	12	CDT10S	EMN22I
SET3G22-N1	22	Side-by-side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22I

1. One EMN21I mixing nozzle and one extension are supplied with each cartridge.

2. Two EMN22I mixing nozzles and two nozzle extensions are supplied with each cartridge.

3. Cartridge estimation guidelines are available at strongtie.com/apps.

4. Use only Simpson Strong-Tie[®] mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.

SET-3G Cure Schedule^{1,2}

Concrete Te	emperature	Gel Time	Cure Time
(°F)	(°C)	(min.)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: $1^{\circ}F = (^{\circ}C \times \%) + 32$.

1. For water-saturated concrete and water-filled holes, the cure times should be doubled.

 For installation of anchors in concrete where the temperature is below 70°F (21°C), the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

Test Criteria

Anchors installed with SET-3G adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non-sag
Heat deflection	ASTM D648	147°F
Bond strength (moist cure)	ASTM C882	3,306 psi at 2 days
Water absorption	ASTM D570	0.13%
Compressive yield strength	ASTM D695	15,390 psi
Compressive modulus	ASTM D695	991,830 psi
Shore D durometer	ASTM D2240	84
Gel time	ASTM C881	52 minutes
Volatile Organic Compound (VOC)	_	1.9 g/L

*Material and curing conditions: $73 \pm 2^{\circ}$ F, unless otherwise noted.

SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic	Sumbol	Units	Nominal Anchor Diameter d _a (in.) / Rebar Size								
	Symbol		3% / #3	1⁄2 / #4	5% / #5	3⁄4 / #6	7⁄8 / #7	1 / #8	1¼/#10		
		Installa	ation Inform	ation		·	·	·			
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7⁄16	9⁄16	11/16	7⁄8	1	1 1/8	1 3/8		
Drill Bit Diameter for Rebar	d _{hole}	in.	1⁄2	1/2 5/8		7⁄8	1	1 1⁄8	1%		
Maximum Tightening Torque	T _{inst}	ftlb.	15	30	60	100	125	150	200		
Minimum Embedment Depth	h _{ef, min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5		
Maximum Embedment Depth	h _{ef, max}	in.	71⁄2	10	121⁄2	15	17½	20	25		
Minimum Concrete Thickness	h _{min}	in.	h _{ef} -	+ 11⁄4							
Critical Edge Distance	C _{ac}	in.	See footnote 2								
Minimum Edge Distance	C _{min}	in.	13⁄4						23⁄4		
Minimum Anchor Spacing	S _{min}	in.	3						6		

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. $C_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

[*h/h_{ef}*] ≤ 2.4

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f'_c)^{0.5} / (\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SIMPSON

Strong

SET-3G Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete^{1, 8}

	Ob a vis a basi		O	11 24			Nominal	Rod Diam	neter (in.)	-	
	Character	ISTIC	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	1¼
		Steel Stre	ength in Ter	nsion					•		
	Minimum Tensile	Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel —				4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel —	,			5,850	10,650	16,950	25,050	34,650	45,450	72,675
	Tension Resistance of Steel —				9,750	17,750	28,250	41,750	57,750	75,750	121,125
	ension Resistance of Steel — Stainless St (Types 304 ar	nd 316)	N _{sa}	lb.	4,445	8,095	12,880	19,040	26,335	34,540	55,235
	on Resistance of Steel — Stainless Stee				7,800	14,200	22,600	28,390	39,270	51,510	82,365
Ten	sion Resistance of Steel — Stainless Ste				8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Strength Reduction Factor for	Tension — Steel Failure	φ					0.755			
		Concrete Breakout Strength in	Tension (2	2,500 ps	si ≤ f' _C ≤ 8	,000 psi)					
	Effectiveness Factor for		K _{C,Cr}					17			
	Effectiveness Factor for U	ncracked Concrete	k _{c,uncr}	—				24			
	Strength Reduction Factor — Concre	ete Breakout Failure in Tension	φ	—				0.656			
		Bond Strength in Tension	n (2,500 ps	i≤f'c≤	s 8,000 ps	i) ⁷					
	Minimum Emb	edment	h _{ef,min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5
	Maximum Emb		h _{ef,max}	in.	71⁄2	10	121⁄2	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
uo		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,672
ecti	To use anothing Downed D ² 4	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,388
nor	Anchor Category	Dry Concrete						1			
ntin	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$	-			1	0.6510			
පි	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_	;	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{\mathit{wet,ci}}$	_	0.4	5 ¹⁰			0.5510		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete9	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
_	iemperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,672
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁹	τ _{k,cr}	psi	1,117	1,082	1,125	1087	1,050	1,012	936
lnspi		Characteristic Bond Strength in Uncracked Concrete ⁹	τ _{k,uncr}	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,388
dic	Sector Anchor Category Dry Concrete				-	2			1		
eric	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$	<u> </u>	0.5	5 ¹⁰			0.6510		
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_				3			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{wet,pi}$	_				0.4510			
	Reduction Factor for S	Seismic Tension	$lpha_{N,seis^{11}}$	—	1.0	0.9	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

- 2. Temperature Range A: Maximum short-term temperature = 160° F, maximum long-term temperature = 110° F.
- Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of φ.
- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_{\rm C} = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f'_{\rm C}/2,500$)^{0.26} for uncracked concrete and a factor of ($f'_{\rm C}/2,500$)^{0.24} for cracked concrete.
- 8. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of \u03c6 applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of \u03c6.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

SET-3G Tension Strength Design Data for Rebar in Normal-Weight Concrete^{1,8}

	Normal-Weight OC						Rebar Size					
		Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
		Stee	el Strength	in Tensio	on				1			
	Minim	num Tensile Stress Area	Ase	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.27	
	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)		N	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300	
	Tension Resistance of	Steel — Rebar (ASTM A706 Grade 60)	N _{sa}	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,600	
	Strength Reduction	n Factor for Tension — Steel Failure	φ	_				0.755				
		Concrete Breakout Stren	gth in Tens	ion (2,50	0 psi ≤ f' _c	≤ 8,000 p	si)					
	Effectivenes	s Factor for Cracked Concrete	K _{c,cr}					17				
	Effectiveness	Factor for Uncracked Concrete	k _{c,uncr}	_				24				
	Strength Reduction Factor	or — Concrete Breakout Failure in Tension	φ	_				0.656				
		Bond Strength in 1			<u> </u>	. ,					1	
		inimum Embedment	h _{ef,min}	in.	23⁄8	2¾	31⁄8	31⁄2	3¾	4	5	
_	Ma	aximum Embedment	h _{ef,max}	in.	7 1⁄2	10	12½	15	17½	20	25	
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁹	$ au_{k,cr}$	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128	
5		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403	
spectio	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete9	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936	
Continuous Inspection	Temperature hange D	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165	
tinu	Anchor Category	Dry Concrete	_	-				1				
Col	Strength Reduction Factor	Dry Concrete	$\phi_{dry,ci}$	_				0.6510				
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_	í.	3			2			
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{\mathit{wet,ci}}$	—	0.4	5 ¹⁰			0.5510			
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete9	$ au_{k,cr}$	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128	
	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403	
ection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete9	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936	
Periodic Inspection		Characteristic Bond Strength in Uncracked Concrete ⁹	$ au_{k,uncr}$	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165	
riodi	Anchor Category	Dry Concrete	—	—	1	2	1					
Pe	Strength Reduction Factor	Dry Concrete	$\phi_{dry,pi}$	_	0.5	5 ¹⁰			0.6510			
	Anchor Category	Water-Saturated Concrete, or Water-Filled Hole		_				3				
	Strength Reduction Factor	Water-Saturated Concrete, or Water-Filled Hole	$\phi_{wet,pi}$	_				0.4510				
	Reduction	Factor for Seismic Tension	$\alpha_{N,seis}$ 11	_	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.

- Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. The tabulated value of \u03c6 applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) are ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of \u03c6.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of $f_c = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f_c/2,500$)^{0.36} for uncracked concrete and a factor of ($f_c/2,500$)^{0.25} for cracked concrete.
- For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 9. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of ϕ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,\text{Seis}}.$

SET-3G Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

Characteristic		Units	Nominal Rod Diameter (in.)							
	Symbol	Units	3⁄8	1⁄2	5⁄8	3⁄4	7⁄8	1	11⁄4	
	rength in Sh	ear								
Minimum Shear Stress Area	Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	$lpha_{V\!,seis^4}$	+			0.75			1.	.0	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	$\alpha_{V,seis}^4$	_	0.	30		0.75		1.0		
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
Co	oncrete Brea	kout Strengt	h in Shear							
Outside Diameter of Anchor	d _a	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	l _e	in.	h _{ef}							
Strength Reduction Factor for Shear — Breakout Failure	φ	—	0.703							
C	oncrete Pryc	out Strength	in Shear/							
Load-Bearing Length of Anchor in Shear	k _{cp}	in.		1.	0 for <i>h_{ef} < 2</i>	2.50"; 2.0 f	or $h_{ef} \ge 2.5$	0"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_	0.703							

steel type.

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

concrete. For anchors installed in regions assigned to Seismic Design Category

4. The values of V_{sa} are applicable for both cracked concrete and uncracked

C, D, E or F, Vsa must be multiplied by α_{Vseis} for the corresponding anchor

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements

IBC

Strong

SIMPSON

SET-3G Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

Characteristic		Unite	Nominal Rod Diameter (in.)							
Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
Stee	el Strength	in Shear						·		
Minimum Shear Stress Area	Ase	in. ²	0.110	0.200	0.310	0.440	0.600	0.790	1.270	
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)			5,940	10,800	16,740	23,760	32,400	42,660	68,580	
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	- V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	60,960	
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60)			0.60					0.8		
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	$\alpha_{V,seis}$ ⁴		0.60					0.8		
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
Concrete B	reakout St	rength ir	n Shear	•				•		
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	l _e	in.				h _{ef}				
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ³				
Concrete	Pryout Str	ength in	Shear							
Load-Bearing Length of Anchor in Shear	k _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "							
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.70 ³				

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The tabulated value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of

ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of ϕ .

4. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vseis} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.